

tell stories,
don’t write them

Collaborate to identify requirements
instead of handing over
documentation

don’t worry
too mUch aboUt
story format

Collaborate to identify requirements
instead of handing over documentation

describe a
behavioUr change

Capture a behaviour change to make
a story measurable from a business
perspective

describe the
system change

Clearly delineate the scope of
the change to help create shared
understanding

approach stories
as sUrvivable
experiments

Stories are based on assumptions
that might turn out to be right or
wrong

watch oUt for
generic roles

Focus on a specifi c customer role
to help provide a useful context for
discussion

evalUate Zone of
control and sphere
of inflUence

Deliverables should be in your zone
of control, and user needs in your
sphere of infl uence

pUt a ‘best before’
date on stories

Manage time-constrained stories
separately, so they don’t turn into
emergencies

set deadlines
for addressing
maJor risks

Strike the right balance between
short-term business wins and
long-term sustainability

Use hierarchical
backlogs

Hierarchical plans allow
organisations to react effectively to
changing market opportunities

groUp stories
by impact

Visualise the connection between
goals and deliverables to help
stakeholders align on priorities

create a User
story map

Remember that the customer
experience ost en starts and ends
outside interaction with sost ware

Change behaviours
using the CREATE
funnel

Break activities into CREATE stages
to come up with great product ideas

set oUt global
concerns at the
start of a milestone

Turn global concerns into design
constraints, instead of ignoring
predictable problems

prioritise Using
stages of growth

User stories need to be aligned with
current business priorities

prioritise Using
pUrpose alignment

Split stories into those where you
need to excel, and those where you
just have to be good enough

make a
stakeholder chart

Do not forget big-picture stakeholders
who won’t necessarily appear in user
stories

Name your
milestones

Meaningful milestone names help
stakeholders prioritise

focUs milestones on
a limited nUmber of
User segments

Select target users to prevent generic
stories and reduce scope creep

Use low-tech
for story
conversations

Discussions around whiteboards are
faster and more productive than
using a technical tool

Imagine the
demonstration

Work out how you will show that you
have met the requirements

Diverge and
merge for story
discussions

Work in smaller groups to increase
the participation of individual team
members

Involve all roles
in the discussion

Instead of delegating analysis to a
single person, involve various roles to
cover all the perspectives

Measure alignment
using feedback
exercises

Measure shared understanding
instead of asking ‘Do you have any
questions?’

play the devil’s
advocate

Challenge expressed user needs and
roles to discover fake stories early

divide
responsibility for
defining stories

Let stakeholders express the need,
and those who can design sost ware
express the solution

Split business
and technical
discussions

Keep stakeholders interested and
engaged by focusing story discussions
on their needs

investigate valUe
on mUltiple levels

When the whole chain of reasoning
is clear, it’s much easier to have a
useful discussion

discUss sliding-
scale measUrements
with QUper

Compare your product to the
competition to expose hidden
assumptions and requirements

Start with
the outputs

The value of a system is in its
outputs, not its inputs

forget the walking
skeleton: pUt it on
crUtches

Deliver value early by nailing down
user interaction, simplify the rest

Narrow down the
customer segment

Give 2% of people 100% of what they
need, instead of giving 100% of people
2% of needs

split by examples
of UsefUlness

Don’t divide work technically and
then look for value – divide by value
and look for useful technical chunks

split by capacity

Capacity is ost en a good way of
breaking down ‘all or nothing’ plans

start with dUmmy,
then move to
dynamic

Use hard-coded reference data in fi rst
story then connect to databases in a
later one

Simplify outputs

Investigate whether some outputs
can be reduced or postponed to
de-risk short-term plans

Split learning
from earning

Time-box research instead of turning
it into vague, uncontrolled work

Extract basic
utility

When business processes cannot be
simplified, pare down user interaction
to the bare minimum

when all else
fails, slice the
hambUrger

Break down technical workfl ows and
group tasks by value

don’t pUsh
everything into
stories

Avoid faking stories to cover internal
tasks so that you can keep your plans
simple and clean

Budget instead of
estimate

Don’t commit on scope, commit to
deliver business value

avoid Using
nUmeric story siZes

Don’t add up story sizes – that way
people won’t be able to misuse them

estimate capacity
based on rolling
nUmber of stories

If you have to add up story sizes, use
only similar stories so that averages
make sense

Estimate
capacity based
on analysis time

If you don’t have time to discuss a
story, you probably won’t have time
to deliver it

Pick impacts
instead of
prioritising stories

Focus on achieving a big impact
instead of balancing work so that
nobody gets angry

Never say ‘no’ –
say ‘not now’

Negotiate sequence of delivery
instead of refusing requests

split Ux
improvements from
consistency work

Manage consistency work and large
interaction improvements separately

Get users to opt in
to large user
interface changes

Roll out UX changes gradually by
offering something important and
asking people to opt in

check oUtcomes
with real Users

Check with real users whether they
actually got expected benefi ts

throw stories away
after they are
delivered

Specifi cations and tests should explain
how a system works currently – not
how it changed over time

